Поиск :
Личный кабинет :
Электронный каталог: Chigarev, A. V. - Expansion of Wave Rays and Fronts in Media with Inhomogeneous Structure
Chigarev, A. V. - Expansion of Wave Rays and Fronts in Media with Inhomogeneous Structure
Статья
Автор: Chigarev, A. V.
Universal Journal of Mechanical Engineering: Expansion of Wave Rays and Fronts in Media with Inhomogeneous Structure
б.г.
ISBN отсутствует
Автор: Chigarev, A. V.
Universal Journal of Mechanical Engineering: Expansion of Wave Rays and Fronts in Media with Inhomogeneous Structure
б.г.
ISBN отсутствует
Статья
Chigarev, A. V.
Expansion of Wave Rays and Fronts in Media with Inhomogeneous Structure / A. V. Chigarev, Ju. V. Chigarev. – DOI 10.13189/ujme.2018.060403 // Universal Journal of Mechanical Engineering. – 2018. – Vol.6 №4. – P. 76-95. - Журнала нет в фонде библиотеки. – Пер. загл.: [Расширение волновых лучей и фронтов в средах с неоднородной структурой]. – На англ. яз.
In the article on the principles of Fermet, Huygens obtaine the differential equations in the form of Hamilton, which describe the ray trajectories and wave fronts in inhomogeneous media. Established that the vector of Poynting-Umov’s determining the direction of energy propagation in inhomogeneous medium is coincident with the vector tangent to the ray. In the second part of the article established that the equations of the theory of rays’ propagation in inhomogeneous media have the form of equations of nonlinear dynamics and describe the emergence of deterministic chaos in the geometry of rays for a wide variety of types of heterogeneous structures. In this case, the rays behave randomly and their description you must go to the description based on the theory of random functions and fields. In the third part of the paper is considered a model which is equivalent to the random medium and the calculation of the coordinates of the ray (the mathematical expectation and correlation functions). Understanding of these characteristics gives information about the behavior of the trajectories of the rays for these models of media. The description of the behavior of rays on the basis of the equations of statistical mechanics is discussed in the article for functions of Markov’s type.
530.145.6
общий = БД Труды научных работников БНТУ : 2018г.
труды сотрудников БНТУ = Машиностроительный факультет : кафедра "Интеллектуальные и мехатронные системы"
труды сотрудников БНТУ = Физика. Механика. Гидравлика (труды)
общий = ВОЛНЫ (физ.)
общий = НЕОДНОРОДНЫЕ СРЕДЫ
общий = РАСПРОСТРАНЕНИЕ ВОЛН
Chigarev, A. V.
Expansion of Wave Rays and Fronts in Media with Inhomogeneous Structure / A. V. Chigarev, Ju. V. Chigarev. – DOI 10.13189/ujme.2018.060403 // Universal Journal of Mechanical Engineering. – 2018. – Vol.6 №4. – P. 76-95. - Журнала нет в фонде библиотеки. – Пер. загл.: [Расширение волновых лучей и фронтов в средах с неоднородной структурой]. – На англ. яз.
In the article on the principles of Fermet, Huygens obtaine the differential equations in the form of Hamilton, which describe the ray trajectories and wave fronts in inhomogeneous media. Established that the vector of Poynting-Umov’s determining the direction of energy propagation in inhomogeneous medium is coincident with the vector tangent to the ray. In the second part of the article established that the equations of the theory of rays’ propagation in inhomogeneous media have the form of equations of nonlinear dynamics and describe the emergence of deterministic chaos in the geometry of rays for a wide variety of types of heterogeneous structures. In this case, the rays behave randomly and their description you must go to the description based on the theory of random functions and fields. In the third part of the paper is considered a model which is equivalent to the random medium and the calculation of the coordinates of the ray (the mathematical expectation and correlation functions). Understanding of these characteristics gives information about the behavior of the trajectories of the rays for these models of media. The description of the behavior of rays on the basis of the equations of statistical mechanics is discussed in the article for functions of Markov’s type.
530.145.6
общий = БД Труды научных работников БНТУ : 2018г.
труды сотрудников БНТУ = Машиностроительный факультет : кафедра "Интеллектуальные и мехатронные системы"
труды сотрудников БНТУ = Физика. Механика. Гидравлика (труды)
общий = ВОЛНЫ (физ.)
общий = НЕОДНОРОДНЫЕ СРЕДЫ
общий = РАСПРОСТРАНЕНИЕ ВОЛН